

COMMITTENTE:

COMUNE DI NOLE

OGGETTO:

REALIZZAZIONE DI PARCHEGGIO PUBBLICO COPERTO E SEMINTERRATO IN VIA SAN SEBASTIANO E RELATIVO COLLEGAMENTO PEDONALE CON PIAZZA VITTORIO EMANUELE II

GEN

002

CODICE AREA:

N° ELABORATO:

LOCALITÀ DELL'INTERVENTO:

COMUNE DI NOLE, VIA SAN SEBASTIANO, N° 8

FASE PROGETTUALE:

PROGETTO DI FATTIBILITÀ TECNICO-ECONOMICA

ARCHIVIO: 4687 365 **GEN** 002

TITOLO ELABORATO:

PFTE 00

DATA:

SCALA:

Loranzè, dicembre 2023

RELAZIONE GEOTECNICA

	CONTROLLO QUALITA' ELABORATI		REDATTO	VERIFICATO	RIESAMINATO	APPROVATO	REV	DATA	NOTE			
CODICE	AMBITO PROGETTUALE	RESPONSABILE D'AREA		RESP. AREA	COORDINATORE	RESP. PROG.	0	12/2023	EMISSIONE			
ARC	ARCHITETTURA ED EDILIZIA	Arch. A. DEMARIA - Arch. M. DI PERNA					1					
GEO	AMBIENTE E TERRITORIO	Geol. P. CAMBULI	E.G.	P.C.			2					
DLL	DIREZIONE LAVORI	Dott. Ing. G. ODETTO				-				3		
ENE	ENERGETICA	Ing. A. BREGOLIN							4			
IDR	IDRAULICA	Ing. M. VERNETTI ROSINA					5					
IEL	IMPIANTI ELETTRICI E SPECIALI	Dott. Ing. E. MERCADO	-		M.D.P.	L.V.	6					
TFM	IMPIANTI TERMOFLUIDOMECCANICI	Ing. A. BREGOLIN					7					
INF	INFRASTRUTTURE	Ing. A. VACCARONE					8					
STR	STRUTTURE	Geom. F. TONINO						9				
VVF	PREVENZIONE INCENDI	Ing. A. BREGOLIN					10					
EXT	COLLABORATORI ESTERNI						11					

Strada Provinciale 222, nº31 10010 Loranzè (TO) TEL. 0125.1970499 FAX 0125.564014

e-mail: info.sertec@sertec-engineering.com www.sertec-engineering.it

IL DIRETTORE TECNICO: Dott. Ing. Gianluca ODETTO

PROGETTISTA:

Ing. Lorenzo VIGNONO N° 13123 ALBO INGEGNERI PROVINCIA DI TORINO

ALTRA FIGURA:

Dott. Geol. Paolo CAMBULI N° 850 ORDINE GEOLOGI **REGIONE PIEMONTE**

Indice

1	PREMES	SA	3
2	NORMA	TIVA DI RIFERIMENTO	4
3	INQUAD	RAMENTO TOPOGRAFICO	5
4	DESCRIZ	ZIONE DELLE OPERE IN PROGETTO	11
5	CARATT	ERISTICHE GEOTECNICHE DEL TERRENO DI SEDIME	13
6	METOD	D E CODICE DI CALCOLO	14
7	DATI DE	LLA STRUTTURA, ZONIZZAZIONE SISMICA, VITA NOMINALE, CLASSE D'USO	18
8	CARATT	ERISTICHE E RESISTENZE DI CALCOLO DEI MATERIALI UTILIZZATI	25
8	3.1 Cal	cestruzzo	25
	8.1.1	Classe di esposizione ambientale.	25
	8.1.2	Classe di consistenza del calcestruzzo.	27
	8.1.3	Classe di contenuto in cloruri	28
	8.1.4	Durabilità	28
8	3.2 Acc	iaio	29
	8.2.1	Sensibilità alla corrosione delle armature	29
	8.2.2	Scelta degli stati limite di fessurazione.	30
8	3.3 Ma ⁻	eriali utilizzati	31
	8.3.1	Calcestruzzo per utilizzo strutturale C25/30	31
	8.3.2	Acciaio per opere in c.a.	31
	8.3.3	Acciaio per armatura micropali	31
9	AZIONI.		33
(9.1 Car	ichi permanenti strutturali	33
(9.2 Car	ichi permanenti non strutturali	33
(9.3 Car	ichi variabili	33
10	COME	BINAZIONI DI CARICO	34
11	PARA ⁻	TIA DI MICROPALI	38
	11.1 Geo	ometria di modellazione	42

11.2	Sollecitazioni agenti	46
	Spostamenti	
11.4	Sintesi dei risultati	47
11.5	Verifiche strutturali	49
11.6	Verifica stabilità globale	50
12 (CONCLUSIONI	51

1 PREMESSA

Il Comune di Nole tramite Determinazione del Responsabile dell'Area Tecnica n° 130 (del registro generale) e n° 88 (dell'Area Tecnica) del 02.02.2023 protocollo n. 1388 affida l'incarico in oggetto a Sertec Engineering Consulting S.r.l, nella persona dell'Ing. Lorenzo VIGNONO, iscritto all'Ordine degli Ingegneri della Provincia di Torino al n. 13123 ed in qualità di socio di Sertec Engineering Consulting S.r.l., con studio professionale in Strada Provinciale 222, n. 31 – 10010 Loranzè (TO), della redazione del progetto di fattibilità tecnico economica per i lavori aventi oggetto "Realizzazione di parcheggio pubblico coperto e seminterrato in Via San Sebastiano e relativo collegamento pedonale con Pizza Vittorio Emanuele II"; Codice CIG: Z6D38D770E.

Il presente progetto, redatto in collaborazione con l'arch. Marco DI PERNA (iscritto all'Ordine degli Architetti della Provincia di Biella con il n° 419 A), costituisce il grado di Progetto di fattibilità tecnico economica, ai sensi dell'art. 23 del D.lgs. n. 50 del 18/04/2016 e delle Linee guida del Ministero delle Infrastrutture e delle mobilità sostenibili (Art. 48, comma 7, del decreto-legge n. 77 del 31/05/2021, convertito nella legge n. 108 del 29/07/2021) individuando il quadro delle esigenze da soddisfare, i vincoli sull'area di intervento, gli obbiettivi del progetto, i risultati attesi a seguito della realizzazione delle opere e la quantificazione dei costi di realizzazione, definendo inoltre le caratteristiche qualitative e funzionali dei lavori in oggetto.

L'intervento in progetto riprende le intenzioni proprie dei precedenti gradi di progettazione quali il progetto di Fattibilità Tecnica ed Economica per la "Realizzazione di parcheggio pubblico coperto e seminterrato in Via San Sebastiano e relativo collegamento pedonale con Piazza Vittorio Emanuele II", da parte dello studio Hydrogeos per l'Amministrazione Comunale di Nole (det. d'incarico N. 415 del 17/05/2017) e del Progetto Definitivo datato novembre 2022 per "Lavori di ristrutturazione dell'oratorio San Giovanni Bosco e del Salone parrocchiale (ex cinema)" redatti dalla stessa Sertec Engineering Consulting. Quest'ultimo ha ottenuto del nulla osta alla realizzazione delle opere da parte della Soprintendenza, nella persona dell'Arch. Emanuela Carpani con protocollo n. 9836 del 15/05/2023.

Scopo della presente è illustrare le condizioni geologiche, geomorfologiche e idrogeologiche relative al suddetto progetto. Dopo un inquadramento topografico e vincolistico dell'area oggetto di intervento, verranno descritte le condizioni geologiche, geomorfologiche e idrogeologiche del sito in esame. Infine, verrà eseguita una caratterizzazione geotecnica dei terreni, le verifiche geotecniche e strutturali delle opere di sostegno.

2 NORMATIVA DI RIFERIMENTO

- Decreto Ministeriale 17.01.2018 Testo Unitario "Norme Tecniche per le Costruzioni NTC 2018";
- Circolare 21 gennaio 2019 n.7 "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018";
- Consiglio Superiore dei Lavori Pubblici Pericolosità sismica e Criteri per la classificazione sismica del territorio nazionale. Allegato al voto n.36 del 27.07.2007;
- R.D. 3267/23;
- L.R. 45/1989 "Nuove norme per gli interventi da eseguire in terreni sottoposti a vincolo per scopi idrogeologici";
- D.M. 11 Marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle fondazioni".
- Circ. Min. LL.PP. n° 30483 del 24 Settembre 1988 "Istruzioni relative alla norme tecniche Riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle fondazioni";
- Legge n° 64 del 02/02/1974 "Prowedimenti per le costruzioni con particolari prescrizioni per le zone sismiche";
- D.M. del 24/01/1986 "Norme tecniche relative alle costruzioni sismiche";
- D.M. del 16/01/1996 "Norme tecniche per le costruzioni in zone sismiche";
- Circolare n° 65 del 10/04/1997 "Istruzioni per l'applicazione delle Norme tecniche per le costruzioni in zone sismiche di cui al D.M. del 16/01/1996";

Conformemente a quanto previsto dal paragrafo 12 del D.M 17/01/2018 si sono considerati anche i seguenti riferimenti tecnici che si intendono coerenti con i principi del D.M. stesso:

- EUROCODICE 7 "Progettazione geotecnica";
- EUROCODICE 8 "Progettazione delle strutture per la resistenza sismica" e appendice nazionale.

3 INQUADRAMENTO TOPOGRAFICO

L'area di studio è situata nel comune di Nole (TO), un piccolo centro abitato ubicato nel basso canavese ai piedi delle Valli di Lanzo; l'intervento in progetto è ubicato in piazza Vittorio Emanuele II ed ha il seguente riscontro cartografico:

CTR 10000			134154
Coordinate		Latitudine	5010986.894N
Cartografiche		Longitudine	388011.506 E
Coordinate	UTM WGS84	Latitudine	45.243462°N
Geografiche	U11VI VVG384	Longitudine	7.573045° E
Altitudine			372 m s.l.m.

Si riportano di seguito delle immagini di inquadramento territoriale.



Figura 1: Inquadramento geografico su sfumo 250k.

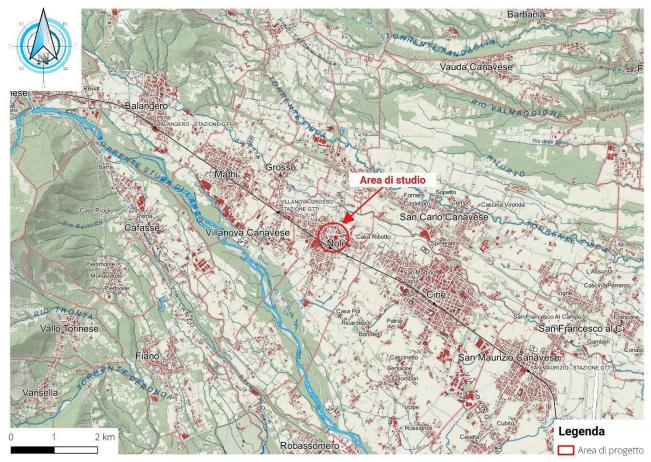


Figura 2: Inquadramento geografico su sfumo 50k.

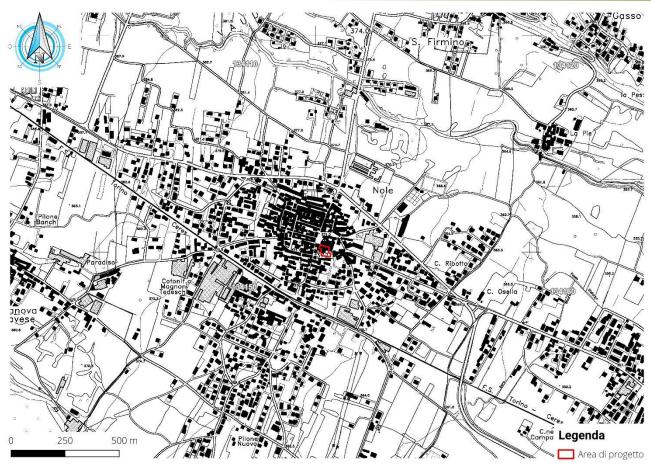


Figura 3: Inquadramento CTR 134110, 13420, 134150, 134160.

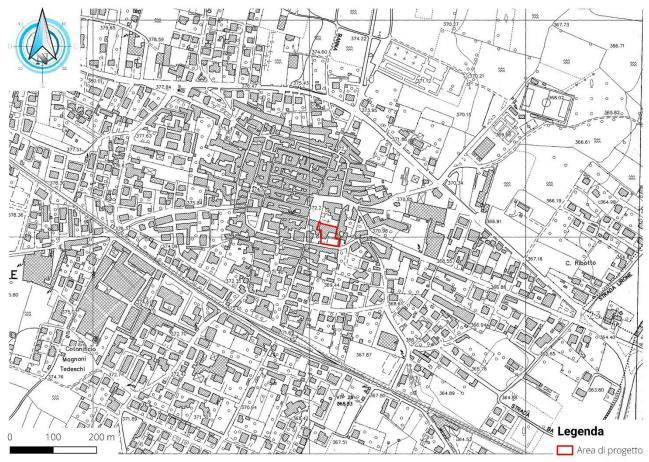


Figura 4: Tracciato intervento su CTP.

Figura 5: Inquadramento su ortofoto.

Figura 6: Vista aerea dell'area di intervento – Fuori scala.

4 DESCRIZIONE DELLE OPERE IN PROGETTO

Il progetto prevede la realizzazione di due tratti di cordolo in c.a. disposti a L e fondati su paratia di micropali, come mostrato in figura.

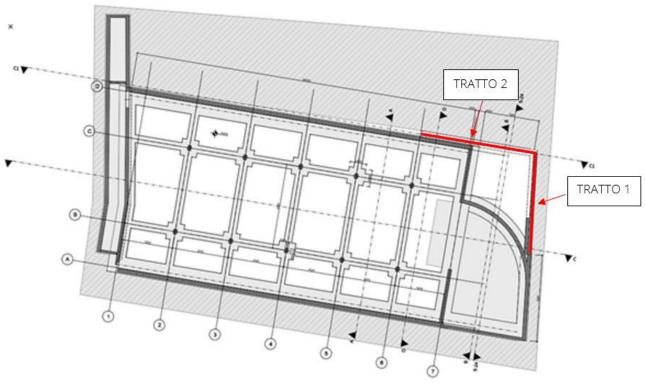


Figura 7: Estratto planimetria di progetto - indicate in rosso le opere in progetto.

Il tratto 1 di cordolo ha lunghezza pari a 9.40 m ed inclinazione di circa 7°, mentre il tratto 2 è disposto orizzontalmente ed ha lunghezza 10.40 m, per un totale di 19.8 m. I micropali, disposti ad interasse di 40 cm lungo tutto lo sviluppo del cordolo, hanno lunghezza 6 m, con infissione variabile sul primo tratto e infissione costante sul secondo tratto. Il diametro di perforazione è pari a 160 mm, con armatura tubolare di diametro 146 mm e spessore 10 mm.

Il cordolo in testa, realizzato in c.a., ha sezione rettangolare con base 60 cm e altezza 80 cm ed armatura costituita da barre in acciaio con diametro variabile da 10 mm a 16 mm.

In Tabella 1sono riassunte le caratteristiche dell'opera.

LUNGHEZZA	DIMENSIONI	LUNGHEZZA	INTERASSE	DIAMETRO	DIAMETRO	SPESSORE
TOTALE	CORDOLO	MICROPALI	MICROPALI	PERFORO	ARMATURA	ARMATURA
PARATIA	IN C.A.					
m	cm	m	cm	mm	mm	mm
19.8	60 x 80	6	40	160	146	10

Tabella 1: Caratteristiche dell'opera in progetto.

Nelle tavole grafiche sono esaurientemente rappresentate le caratteristiche progettuali delle opere descritte nella presente relazione.

5 CARATTERISTICHE GEOTECNICHE DEL TERRENO DI SEDIME

Dall'analisi dei dati di bibliografia si può affermare che l'opera in progetto si inserisce in un mezzo geologico costituito da ghiaie ciottolose con pezzatura da decimetrica a centimetrica, associate ad una frazione sabbiosa e sabbioso-limosa.

Sulla base dell'analisi dei dati bibliografici e dell'esperienza dello scrivente in lavori eseguiti su formazioni geologiche del tutto simili a quelle interessate dai lavori in oggetto, è stato possibile assegnare cautelativamente e compiutamente i valori dei principali parametri geotecnici al mezzo geologico in cui l'opera si inserisce.

Descrizione	Peso unità di	Peso unità di	Angolo d'attrito	Coesione
	volume secco	volume saturo	[°]	[kPa]
	[kN/m³]	[kN/m3]		
Depositi ghiaioso- sabbiosi	18	20	34	0

Tabella 2: Parametri geotecnici.

6 METODO E CODICE DI CALCOLO

I calcoli per il dimensionamento strutturale dell'opera sono stati condotti adottando il metodo semiprobabilistico agli stati limite, verificandone i requisiti di sicurezza allo stato limite ultimo (anche sotto l'azione sismica) e allo stato limite di esercizio. L'analisi delle azioni sismiche ha comportato inoltre la valutazione delle relative deformazioni.

La schematizzazione della procedura progettuale adottata può essere sinteticamente così riassunta:

- Individuazione della classe d'uso dell'opera e della sua vita utile;
- Definizione delle azioni agenti in condizioni statiche e dinamiche attraverso l'individuazione delle condizioni di carico;
- Predisposizione delle combinazioni di carico, con i relativi coefficienti di combinazione allo SLU, SLE, SLV, SLD;
- Analisi dell'inviluppo delle azioni agenti;
- Dimensionamento degli elementi strutturali e verifica della funzionalità delle strutture progettate.

La sicurezza e le prestazioni sono state garantite verificando gli stati limite sopra definiti in funzione dell'utilizzo della struttura, della sua vita nominale e di quanto stabilito dalle norme.

L'analisi strutturale condotta è stata del tipo: SISMICA STATICA EQUIVALENTE.

Ai sensi del par. 6.5.3.1.2 delle NTC/2018 le <u>verifiche sulle paratie</u> vanno effettuate nei confronti dei seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di tipo idraulico (UPL e HYD)
 - o collasso per rotazione intorno a un punto dell'opera (atto di moto rigido);
 - o collasso per carico limite verticale;
 - o sfilamento di uno o più ancoraggi;
 - o instabilità del fondo scavo in terreni a grana fine in condizioni non drenate;
 - o instabilità del fondo scavo per sollevamento;
 - o sifonamento del fondo scavo;
 - o instabilità globale del complesso opera di sostegno-terreno;
- SLU di tipo strutturale (STR)
 - o raggiungimento della resistenza in uno o più ancoraggi;
 - o raggiungimento della resistenza in uno o più puntoni o di sistemi di contrasto;

o raggiungimento della resistenza strutturale della paratia.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni								
	Effetto	Coefficiente Parziale γ_{F} (o γ_{E})	EQU	(A1)	(A2)			
Carichi permanenti G1	Favorevole	γ _{G1}	0,9	1,0	1,0			
	Sfavorevole		1,1	1,3	1,0			
Carichi permanenti G2(1)	Favorevole	γ _{G2}	0,8	0,8	0,8			
	Sfavorevole		1,5	1,5	1,3			
Azioni variabili Q	Favorevole	Υ _Q	0,0	0,0	0,0			
	Sfavorevole		1,5	1,5	1,3			
) Per i carichi permanenti G2 si ap	plica quanto indicato	o alla Tabella 2.6.I. Per la sp	inta delle	erre si fa	riferimer			

Tabella 3: Coefficienti parziali per le azioni o per l'effetto delle azioni

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
Tangente dell'angolo di resi- stenza al taglio	$ an {m \phi}'_k$	γ _{φ′}	1,0	1,25			
Coesione efficace	c′ _k	γc	1,0	1,25			
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4			
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0			

Tabella 4: Coefficienti parziali per i parametri geotecnici del terreno

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo							
COEFFICIENTE	R2						
γ_{R}	1,1						

Tabella 5: Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

Le verifiche nei riguardi degli stati limite idraulici (UPL e HYD) devono essere eseguite come descritto nel § 6.2.4.2.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 1 considerando le due combinazioni di coefficienti:

Combinazione 1: (A1+M1+R1)Combinazione 2: (A2+M2+R1)

Tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II, con i coefficienti γ R del gruppo R1 pari all'unità.

Per le paratie, i calcoli di progetto devono comprendere la verifica degli eventuali ancoraggi, puntoni o strutture di controventamento.

Fermo restando quanto specificato nel § 6.5.3.1.1 per il calcolo delle spinte, per valori dell'angolo d'attrito tra terreno e parete $\delta > \phi'/2$, ai fini della valutazione della resistenza passiva è necessario tener conto della non planarità delle superfici di scorrimento.

La modellazione delle paratie e la rielaborazione dei risultati del calcolo sono stati effettuati con il programma di modellazione PAC 3D - 16, prodotto da Aztec Utility.

Il software PAC3D è dedicato all'analisi e al calcolo di paratie. Possono essere analizzate:

- paratie di pali o micropali, disposti anche su più file
- paratie a setti in c.a.
- paratie con sezione a T
- paratie metalliche a sezione generica.

La paratia da analizzare può essere ancorata tramite una o più file di tiranti, attivi o passivi.

La paratia è discretizzata, mediante il metodo degli elementi finiti, in una serie di elementi tipo trave, mentre il terreno viene schematizzato con una serie di molle a comportamento elastoplastico reagenti solo a compressione (problema di Verifica). Questo tipo di analisi presenta il vantaggio, rispetto ai metodi classici, di considerare la paratia con la sua effettiva rigidezza ed è in grado di fornire una soluzione in termini di spostamenti.

Nel programma PAC3D è possibile selezionare il metodo con cui analizzare la paratia, nella opportuna finestra di opzioni di analisi. Nella fase di Verifica è possibile effettuare l'analisi per fasi di scavo. PAC esegue, inoltre, l'analisi di stabilità del pendio nei pressi dell'opera, così come prescrive la Normativa vigente, con il metodo di Fellenius o di Bishop.

L'analisi della paratia può essere eseguita sia in condizioni statiche sia in condizioni sismiche. Nel caso di paratie di pali o a setti in c.a., PAC3D esegue il progetto delle armature in funzione delle direttive impostate dall'Utente. La verifica delle sezioni può essere eseguita con il metodo delle Tensioni Ammissibili oppure con il metodo degli Stati Limite Ultimi.

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni. L'analisi strutturale è condotta con l'analisi statica non-lineare, utilizzando il metodo degli spostamenti per la valutazione dello stato limite indotto dai carichi statici. L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 17/01/2018.

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società

produttrice Aztec Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

7 DATI DELLA STRUTTURA, ZONIZZAZIONE SISMICA, VITA NOMINALE, CLASSE D'USO

La classificazione sismica del territorio nazionale ha introdotto normative tecniche specifiche per le costruzioni di edifici, ponti ed altre opere in aree geografiche caratterizzate dal medesimo rischio sismico.

Si riporta di seguito la mappatura del Piemonte che riporta la classificazione sismica del territorio regionale, redatta ai sensi dell' Ordinanza del Presidente del Consiglio dei Ministri n. 3274/2003 – "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica", aggiornata con la Delibera della Giunta Regionale del Piemonte n. 11-13058 del 19.01.2010, entrata in vigore con la D.G.R. n. 4-3084 del 12.12.2011 ed in seguito modificate con la D.G.R. n. 65-7656 del 21 maggio 2014 ed in seguito aggiornata nuovamente con l'entrata in vigore della Deliberazione della Giunta Regionale 30 dicembre 2019, n. 6-887 OPCM 3519/2006. Presa d'atto e approvazione dell'aggiornamento della classificazione sismica del territorio della Regione Piemonte, di cui alla D.G.R. del 21 maggio 2014, n. 65-7656.

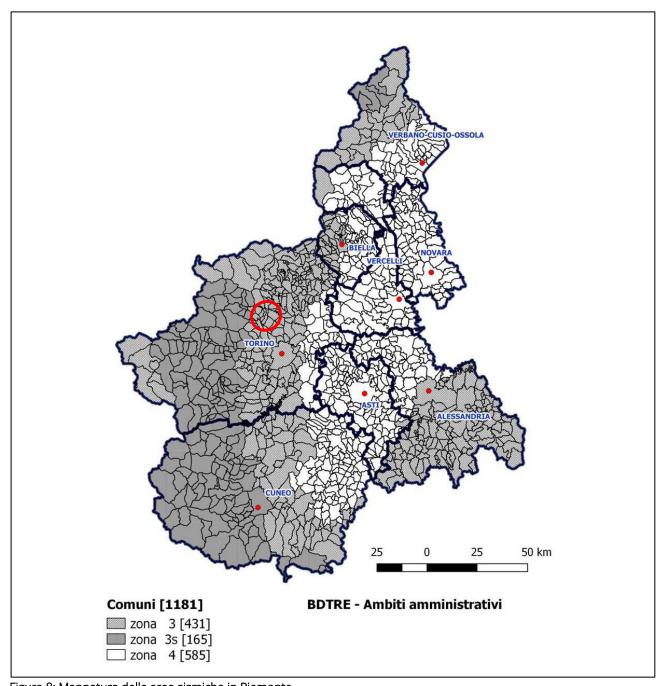


Figura 8: Mappatura delle aree sismiche in Piemonte.

Il Comune di Nole (TO) rientra tra le aree classificate in <u>Zona 3: Zona con pericolosità sismica bassa, che può essere soggetta a scuotimenti modesti.</u>

Regione	PIEMONTE
Provincia	TORINO
Comune	NOLE

Coordinate Geografiche del	Latitudine	45.243462°N
cantiere	Longitudine	7.573045° E
Altitudine		372 m s.l.m.
Zona sismica		ZONA 3
Tipo di opera	Tab. 2.4.I D.M. 17/01/2018	ORDINARIA
Vita nominale V _N	P.to 2.4.1 D.M. 17/01/2018	50 ANNI
Classe d'uso	P.to 2.4.2 D.M. 17/01/2018	
Coefficiente d'uso Cu	P.to 2.4.3 D.M. 17/01/2018	1
Periodo di riferimento per	P.to 2.4.3 D.M. 17/01/2018	50 ANNI
azione sismica V _R		

Tabella 6: Dati della struttura e zona sismica.

Le Norme Tecniche per le Costruzioni individuano le azioni sismiche di progetto a partire dalla "pericolosità sismica di base" del sito di costruzione. Essa costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche. Le NTC2018 definiscono al par. 3.2 la pericolosità sismica in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_e(T)$, con riferimento a prefissate probabilità di eccedenza P_{VR} . Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag: accelerazione orizzontale massima al sito;

F₀: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T_c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Il calcolo delle opere in oggetto è stato realizzato facendo riferimento ai seguenti parametri:

	T _R [anni]	a _g [m/s²]	F_0	$T_{C}^{*}[s]$
SLO	30	0.239	2.567	0.179
SLD	50	0.295	2.577	0.200
SLV	475	0.575	2.743	0.272
SLC	975	0.686	2.787	0.286

Tabella 7: Parametri sismici di progettazione.

L'analisi delle condizioni di stabilità dei pendii in condizioni sismiche può essere eseguita mediante metodi pseudostatici, metodi degli spostamenti e metodi di analisi dinamica.

Nelle analisi si deve tenere conto dei comportamenti di tipo fragile che si manifestano nei terreni a grana fine sovraconsolidati e nei terreni a grana grossa addensati con una riduzione della resistenza al taglio al crescere delle deformazioni. Inoltre si deve tener conto dei possibili incrementi di pressione interstiziale indotti in condizioni sismiche nei terreni saturi. Nei metodi pseudostatici l'azione sismica è

rappresentata da un'azione statica equivalente, costante nello spazio e nel tempo, proporzionale al peso W del volume di terreno potenzialmente instabile.

Tale forza dipende dalle caratteristiche del moto sismico atteso nel volume di terreno potenzialmente instabile e dalla capacità di tale volume di subire spostamenti senza significative riduzioni di resistenza. Nelle verifiche allo stato limite ultimo, in mancanza di studi specifici, le componenti orizzontale e verticale di tale forza possono esprimersi come $F_h = k_h \times W$ ed $F_v = k_v \times W$, con k_h e k_v rispettivamente pari ai coefficienti sismici orizzontale e verticale:

$$k_h = \beta_s \cdot \frac{a_{\text{max}}}{g}$$
$$k_v = \pm 0.5 \cdot k_h$$

 β_s = coefficiente di riduzione dell'accelerazione massima attesa al sito.

Per tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale è necessario individuare il valore del coefficiente topografico S_T , dipendente dalle categorie topografiche illustrate nella seguente tabella:

Tab. 3.2.III - Categorie topografiche

	0 101
Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella 8: Categorie topografiche - Tabella 3.2.III D.M. 17/01/2018.

Il caso in studio è stato associato alla categoria topografica T1, alla quale corrisponde un coefficiente di amplificazione topografica S_T pari a 1.0 (tabella 3.2.V D.M. 17/01/2018).

Ai fini della definizione dell'azione sismica di progetto si rende necessario inoltre valutare l'effetto della risposta sismica locale mediante specifiche analisi. In assenza di tali analisi, per la definizione dell'azione sismica si può fare riferimento ad un approccio semplificato, che si basa sull'individuazione di categorie di sottosuolo di riferimento illustrate nella seguente tabella:

Tab. 3.2.II - Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Catalanda	Constitution to the second sec
Categoria	Caratteristiche della superficie topografica
Α	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri-
	stiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego- rie C o D, con profondità del substrato non superiore a 30 m.

Tabella 9: Categorie di sottosuolo da Tabella 3.2.II D.M. 17/01/2018.

Non avendo effettuato indagini specifiche in sito, nel caso in progetto si assume che la categoria di sottosuolo sia la D, alla quale corrisponde il valore massimo del coefficiente di amplificazione stratigrafica S₅ pari a 1.8.

L'analisi delle condizioni di stabilità delle paratie, in condizioni sismiche, può essere eseguita con specifici metodi di analisi dinamica o mediante metodi pseudo-statici.

Ai sensi delle NTC 2018 nei metodi pseudo-statici l'azione sismica è definita mediante un'accelerazione equivalente, costante nello spazio e del moto sismico atteso nel volume di terreno significativo per l'opera e della capacità dell'opera di nel tempo. Le componenti orizzontale e verticale a_h e a_v dell'accelerazione equivalente devono essere ricavate in funzione delle proprietà subire spostamenti senza significative riduzioni di resistenza.

In mancanza di studi specifici, a_h può essere legata all'accelerazione di picco a_{max} attesa nel volume di terreno significativo per l'opera mediante la relazione:

$$a_h = k_h \cdot g = \alpha \cdot \beta \cdot a_{max}$$

dove g è l'accelerazione di gravità, k_h è il coefficiente sismico in direzione orizzontale, $\alpha \leq 1$ è un coefficiente che tiene conto della deformabilità dei terreni interagenti con l'opera e $\beta \leq 1$ è un coefficiente funzione della capacità dell'opera di subire spostamenti senza cadute di resistenza. Per le paratie si può porre $a_v = 0$.

L'accelerazione di picco a_{max} è valutata mediante un'analisi di risposta sismica locale, oppure come

$$a_{max} = S \cdot a_g = (S_S \cdot S_T) \cdot a_g$$

dove S è il coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T), di cui al § 3.2.3.2, ed a_g è l'accelerazione orizzontale massima attesa su sito di riferimento rigido.

Il valore del coefficiente α può essere ricavato a partire dall'altezza complessiva H della paratia e dalla categoria di sottosuolo mediante il diagramma di Figura 9.

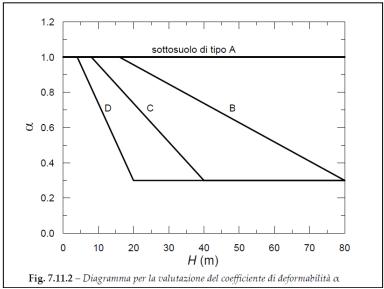


Figura 9: Diagramma per la valutazione di α.

Il valore del coefficiente β può essere ricavato dal diagramma di Figura 10, in funzione del massimo spostamento permanente Us che l'opera può tollerare, verificando l'effettivo sviluppo di meccanismi duttili nel sistema. In assenza di tale verifica, il coefficiente β vale 1.

Se $\alpha \cdot \beta \leq 0.2$ deve assumersi $k_h = 0.2 \cdot \frac{a_{max}}{g}$.

Possono inoltre essere trascurati gli effetti inerziali sulle masse che costituiscono la paratia.

Per valori dell'angolo di resistenza al taglio tra terreno e parete $\delta > \frac{\varphi'}{2}$, ai fini della valutazione della resistenza passiva è necessario tener conto della non planarità delle superfici di scorrimento.

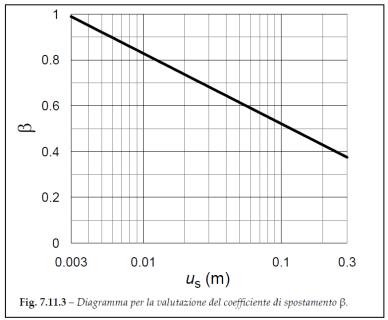


Figura 10: Diagramma per la valutazione di β.

Per paratie realizzate in corrispondenza di versanti o in prossimità di pendii naturali devono essere soddisfatte le condizioni di stabilità del pendio, in presenza della nuova opera, con i metodi di analisi di cui al par. 7.11.3.5. Deve inoltre essere soddisfatta la verifica di stabilità del complesso paratia-terreno con i criteri indicati al par. 7.11.4.

Per le paratie devono essere soddisfatte le condizioni di sicurezza nei confronti dei possibili stati limite ultimi (SLV) verificando il rispetto della condizione [6.2.1] con i coefficienti di sicurezza parziali prescritti al par. 7.11.1.

Nelle verifiche, per azioni s'intendono le risultanti delle spinte a tergo della paratia e per resistenze s'intendono le risultanti delle spinte a valle della paratia e le reazioni dei sistemi di vincolo.

Si riportano infine i coefficienti di deformabilità e di spostamento calcolati dal software di calcolo per il lavoro in oggetto.

	SLU
Coefficiente di riduzione per spostamento massimo Us [m]	0.030
Coefficiente di riduzione per tipo di sottosuolo ($lpha$)	0.913
Coefficiente di riduzione (β)	0.626
Prodotto α β	0.620> 0.2

Tabella 10: Coefficienti sismici.

8 CARATTERISTICHE E RESISTENZE DI CALCOLO DEI MATERIALI UTILIZZATI

8.1 Calcestruzzo.

8.1.1 Classe di esposizione ambientale.

Le diverse superfici di calcestruzzo di un dato componente strutturale possono essere soggette a diverse azioni ambientali, classificate dalla norma UNI – EN 206:2016 come classi di esposizione. Le classi di esposizione da scegliere dipendono dalle disposizioni valide nel luogo d'impiego del calcestruzzo, e tale classificazione non esclude considerazioni in merito a condizioni speciali che possano esistere nel luogo di impiego del calcestruzzo o di misure protettive come l'uso di acciaio inossidabile o altri metalli resistenti alla corrosione e l'uso di rivestimenti protettivi per il calcestruzzo o per l'armatura. Le Norme Tecniche per le Costruzioni 2018, al paragrafo 4.1.2.2.4.2, stabiliscono che le condizioni ambientali possano essere suddivise, ai fini della protezione contro la corrosione delle armature metalliche, in condizioni ordinarie, aggressive e molto aggressive in relazione a quanto indicato nella seguente tabella. La suddivisione fa riferimento alle classi di esposizione definite nelle Linee Guida per il calcestruzzo strutturale emesse dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 11: Descrizione delle condizioni ambientali - TAB 4.1.III D.M. 17/01/2018.

La seguente tabella mostra le diverse classi di esposizione ambientale nella quale si evidenziano le classi di esposizione per le opere in progetto:

Classi di esposizione

Denominazione della classe	Descrizione dell'ambiente	Esempi informativi di situazioni a cui possono applicarsi le classi di esposizione
1 Assenza di rischio di corrosione	o attacco	
X0	Per calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove c'è gelo/disgelo, abrasione o attacco chimico. Per calcestruzzo con armatura o inserti metallici: molto asciutto.	Calcestruzzo all'interno di edifici con umidità dell'aria molto bassa

2 Corrosione indotta da carbonatazione

Nel caso in cui il calcestruzzo contenente armature o inserti metallici sia esposto all'aria e all'umidità, l'esposizione sarà classificata nel modo seguente:

Nota Le condizioni di umidità si riferiscono a quelle presenti nel copriferro o nel ricoprimento di inserti metallici, ma in molti casi si può considerare che tali condizioni riflettano quelle dell'ambiente circostante. In questi casi la classificazione dell'ambiente circostante può essere adeguata. Questo può non essere il caso se c'è una barriera fra il calcestruzzo e il suo ambiente.

XC1	Asciutto o permanentemente bagnato	Calcestruzzo all'interno di edifici con bassa umidità relativa Calcestruzzo costantemente immerso in acqua
XC2	Bagnato, raramente asciutto	Superfici di calcestruzzo a contatto con acqua per lungo tempo Molte fondazioni
XC3	Umidità moderata	Calcestruzzo all'interno di edifici con umidità relativa dell'aria moderata oppure elevata Calcestruzzo esposto all'esterno protetto dalla pioggia
XC4	Ciclicamente bagnato ed asciutto	Superfici di calcestruzzo soggette al contatto con acqua, non nella classe di esposizione XC2

3 Corrosione indotta da cloruri esclusi quelli provenienti dall'acqua di mare

Qualora il calcestruzzo contenente armature o altri inserti metallici sia soggetto al contatto con acqua contenente cloruri, inclusi i sali antigelo, con origine diversa dall'acqua di mare, l'esposizione sarà classificata come segue:

Nota In riferimento alle condizioni di umidità vedere anche sezione 2 del presente prospetto.

XD1	Umidità moderata	Superfici di calcestruzzo esposte a nebbia salina
XD2	Bagnato, raramente asciutto	Piscine Calcestruzzo esposto ad acque industriali contenenti cloruri
XD3	_	Parti di ponti esposte a spruzzi conte- nenti cloruri Pavimentazioni Pavimentazioni di parcheggi

4 Corrosione indotta da cloruri presenti nell'acqua di mare

Qualora il calcestruzzo contenente armature o altri inserti metallici sia soggetto al contatto con cloruri presenti nell'acqua di mare oppure con aria che trasporta sali derivanti dall'acqua di mare, l'esposizione sarà classificata come segue:

	Esposto a nebbia salina ma non in contatto diretto con acqua di mare	Strutture prossime oppure sulla costa
XS2	Permanentemente sommerso	Parti di strutture marine
XS3	Zone esposte alle onde oppure alla marea	Parti di strutture marine

5 Attacco dei cicli gelo/disgelo	con o senza sali disgelanti	
Qualora il calcestruzzo bagnato sia classificata come segue:	a esposto ad un attacco significativo dovuto a	a cicli di gelo/disgelo, l'esposizione sarà
XF1	Moderata saturazione d'acqua, senza impiego di agente antigelo	Superfici verticali di calcestruzzo esposte alla pioggia e al gelo
XF2	Moderata saturazione d'acqua, con uso di agente antigelo	Superfici verticali di calcestruzzo di strutture stradali esposte al gelo e nebbia di agenti antigelo
XF3	Elevata saturazione d'acqua, senza agente antigelo	Superfici orizzontali di calcestruzzo esposte alla pioggia e al gelo
XF4	Elevata saturazione d'acqua, con agente antigelo oppure acqua di mare	Strade e impalcati da ponte esposti agli agenti antigelo Superfici di calcestruzzo esposte diret- tamente a nebbia contenente agenti antigelo e al gelo
6 Attacco chimico		1
caratteristiche definite nel prospe dell'acqua di mare dipende dalla impiego del calcestruzzo. Nota Può essere necessario uno - al di fuori dei limiti del pro - in presenza di altri aggres - in presenza di terreni o ac		è indicato di seguito. La classificazione re la classificazione valida nel luogo d posizione da applicare quando si è:
XA1	Ambiente chimico debolmente aggressivo secondo il prospetto 2	
XA2	Ambiente chimico moderatamente aggressivo secondo il prospetto 2	
XA3	Ambiente chimico fortemente	

Tabella 12: Classi di esposizione.

In particolare, si prevede una classe XC2.

8.1.2 Classe di consistenza del calcestruzzo.

La classe di consistenza è una proprietà del calcestruzzo allo stato fresco che influenza fortemente le proprietà del calcestruzzo indurito, e la si misura facilmente in cantiere con il cono di Abrams. La classe di consistenza è da considerarsi come un indice della lavorabilità del calcestruzzo, cioè la caratteristica che consente di confezionare, trasportare, gettare e compattare il materiale con una certa facilità. Si riporta nella seguente tabella i valori delle classi di abbassamento in funzione del relativo abbassamento al cono di Abrams. Il calcestruzzo scelto per la realizzazione delle opere in c.a. ha una classe di consistenza S4.

aggressivo secondo il prospetto 2

Classi di abbassamento al cono (slump)

Classe	Abbassamento al cono
S1	da 10 a 40
S2	da 50 a 90
S3	da 100 a 150
S4	da 160 a 210
S5 ¹⁾	≥220

Tabella 13: Classi di abbassamento al cono (slump).

8.1.3 Classe di contenuto in cloruri.

I cloruri presenti nella massa cementizia sono una delle cause più importanti del degrado delle armature d'acciaio. Questi possono penetrare dall'esterno, se presenti in massicce quantità sulla superficie dell'elemento strutturale in calcestruzzo armato, ma possono essere veicolati anche dalle materie componenti il calcestruzzo. Ad esempio alcuni additivi acceleranti possono contenere una certa quantità di cloruri.

Il contenuto di cloruri nel calcestruzzo non deve eccedere il valore indicato della classe selezionata del prospetto seguente (par. 5.2.8 UNI EN 206:2016).

Contenuto massimo di cloruri nel calcestruzzo

Impiego del calcestruzzo	Classe di contenuto in cloruri ^{a)}	Massimo contenuto di Cl ⁻ rispetto alla massa del cemento ⁵⁾ 1,0%	
n assenza di armatura di acciaio o di altri inserti metallici (ad eccezione dei dispositivi di sollevamento resistenti alla corrosione)	CI 1,0		
n presenza di armatura d'acciaio o di	CI 0,20	0,20%	
altri inserti metallici	CI 0,40	0,40%	
n presenza di armatura d'acciaio da	CI 0,10	0,10%	
precompressione	CI 0.20	0.20%	

Tabella 14: Contenuto massimo di cloruri nel calcestruzzo.

aggiunte considerate.

8.1.4 Durabilità.

Le Norme tecniche per le Costruzioni 2018 al paragrafo 4.1.6.1.3 prescrivono che "al fine della protezione delle armature dalla corrosione, lo strato di ricoprimento del calcestruzzo (copriferro) deve essere dimensionato in funzione dell'aggressività dell'ambiente e della sensibilità delle armature alla corrosione, tenendo anche conto delle tolleranze di posa delle armature".

A tal fine si può fare riferimento alla UNI EN 1992-1-1 per dimensionare correttamente i copriferri. Il valore nominale del copriferro è calcolato secondo l'espressione:

$$c_{nom} = c_{min} + \Delta c_{dev}$$

dove:

$$c_{min} = \max \{c_{min,b}; c_{min,dur} + \Delta c_{dur,\gamma} - \Delta c_{dur,st} - \Delta c_{dur,add}; 10mm\}$$

in cui:

$$\Delta c_{dur,\gamma} = \Delta c_{dur,st} = \Delta c_{dur,add} = 0$$

 $c_{min,b}$ è il copriferro minimo necessario per l'aderenza delle armature. Per armature ordinarie $c_{min,b}$ è pari al diametro della barra, nel caso di barre singole, e al diametro equivalente, nel caso di barre raggruppate.

c_{min,dur} è il copriferro minimo correlato alle condizioni ambientali e si ricava dai prospetti seguenti in funzione della classe di esposizione, ricordando che la classe strutturale per un periodo di vita nominale presunta della struttura pari a 50 anni è la classe strutturale S4 (vedi prospetti seguenti).

Per quanto riguarda la tolleranza Δc_{dev}, essa è compresa tra 0 e 10 mm.

A titolo cautelativo si è scelto un copriferro minimo pari a 40 mm.

Requisito ambientale	e per c _{min,dur} (m	Requisito ambientale per c _{min,dur} (mm)					
Classe strutturale	Classe di esposizione secondo il prospetto 4.1						
	X0	XC1	XC2 / XC3	XC4	XD1 / XS1	XD2 / XS2	XD3 / XS3
S1	10	10	10	15	20	25	30
S2	10	10	15	20	25	30	35
S3	10	10	20	25	30	35	40
S4	10	15	25	30	35	40	45
S5	15	20	30	35	40	45	50
S6	20	25	35	40	45	50	55

Tabella 15: Valori del copriferro per la durabilità del calcestruzzo da Eurocodice 2.

8.2 Acciaio.

8.2.1 Sensibilità alla corrosione delle armature.

Le Norme Tecniche per le Costruzioni, al par. 4.1.2.2.4.3, suddividono in due gruppi le armature:

- Armature sensibili;
- Armature poco sensibili.

Appartengono al primo gruppo gli acciai da precompresso, mentre appartengono al secondo gruppo gli acciai ordinari. Per gli acciai zincati e per quelli inossidabili si può tenere conto della loro minor sensibilità alla corrosione.

La seguente tabella riepilogativa riassume le prescrizioni relative ai materiali utilizzati per il dimensionamento dell'opera strutturale con riferimento alle condizioni ambientali e alla sensibilità delle armature alla corrosione.

Calcestruzzo				
Classe di esposizione ambientale		XC2		
Condizione ambientale	TAB. 4.1.III D.M. 17/01/2018	ORDINARIA		

Classe di consistenza cls		S4		
Massimo rapporto a/c		0.60		
D _{max} : dimensione nominale max aggregati		32 mm		
Tipi di acciaio				
Acciai da precompressione presenti		NO		
Acciai ordinari presenti		SI		
Acciai zincati presenti		NO		
Acciai inox presenti		NO		

Tabella 16: Materiali.

8.2.2 Scelta degli stati limite di fessurazione.

Sono ora indicati i criteri di scelta dello stato limite di fessurazione con riferimento alla TAB. 4.1.IV D.M. 17/01/2018.

Il paragrafo 4.1.2.2.4 delle NTC 2018 individua i seguenti valori di w₁ w₂ e w₃:

Gruppi di Condizioni		Combinations	Armatura				
		Combinazione di azioni	Sensibile	Poco sensibile			
esigenze ambientali	di azioni	Stato limite	$\mathbf{w_d}$	Stato limite	$\mathbf{w_d}$		
	Ordinarie	frequente	ap. fessure	\leq W ₂	ap. fessure	\leq W ₃	
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq W ₂	
	Accrecaire	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq W ₂	
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	
c	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$	
		quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	

Tabella 17: Criteri di scelta dello stato limite di fessurazione.

W ₁	0,2 mm
W ₂	0,3 mm
W3	0,4 mm

Tabella 18: Valori limite apertura delle fessure.

Per la verifica a fessurazione si è fatto riferimento ad una condizione ambientale di tipo aggressivo.

8.3 Materiali utilizzati.

8.3.1 Calcestruzzo per utilizzo strutturale C25/30

Tipo di calcestruzzo		C25/30
R _{ck} calcestruzzo	(daN/cm ²)	300
Modulo elastico	(daN/cm ²)	314472
Resistenza caratteristica cilindrica (fck)	(daN/cm ²)	249
Resistenza caratteristica a trazione (F _{ctk})	(daN/cm ²)	18
Resistenza media (F _{cm})	(daN/cm ²)	329
Resistenza media a trazione (F _{ctm})	(daN/cm ²)	26

Tabella 19: Caratteristiche C25/30.

8.3.2 Acciaio per opere in c.a.

Tipo di acciaio		B450C
fyk tensione caratteristica di snervamento	(daN/cm ²)	4500
Modulo elastico	(daN/cm ²)	2060000
f _{tk} tensione caratteristica ultima	(daN/cm ²)	5400
Coefficiente di Poisson υ		0.3
γs		1.15
f _{yd} tensione di snervamento di calcolo	(daN/cm ²)	3910

Tabella 20: Caratteristiche B450C.

8.3.3 Acciaio per armatura micropali

Tipo di acciaio		S235
Tensione caratteristica di snervamento (Fyk)	(daN/cm2)	2350
Ftk	(daN/cm2)	3600
Agtk		7.5%

Tabella 21: Caratteristiche acciaio S235.

Leggi costitutive dei materiali

Con riferimento ai paragrafi 4.1.2.1.2.1 e 4.1.2.1.2.2 delle Norme Tecniche per le Costruzioni 2018, per il calcestruzzo è stata considerata la legge σ - ϵ di tipo parabola-rettangolo, per l'acciaio d'armatura il modello σ - ϵ di tipo elastico perfettamente plastico.

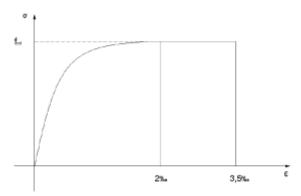


Figura 11: Diagramma di calcolo parabola-rettangolo per il calcestruzzo compresso.

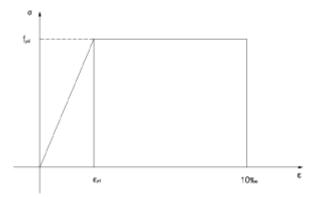


Figura 12: Diagramma di calcolo elastico-perfettamente plastico per l'acciaio delle barre di armatura.

9 AZIONI

In accordo con la normativa citata al capitolo 2 della presente relazione, in linea generale vanno considerati nei calcoli le seguenti azioni:

- Carichi permanenti strutturali;
- Carichi permanenti NON strutturali;
- Carichi variabili.

9.1 Carichi permanenti strutturali

I carichi permanenti strutturali derivanti dai pesi propri della struttura vengono calcolati automaticamente dal software di calcolo, considerando la massa volumica del calcestruzzo armato pari a 2500 kg/m³. Sono presenti inoltre i carichi derivanti dalle strutture sovrastanti la paratia, riportati in tabella ed agenti sulla paratia stessa.

Cordolo	Carico permanente strutturale [kN/m]
Tratto 1	19.22
Tratto 2	35.90

Tabella 22: Carichi permanenti strutturali.

9.2 Carichi permanenti non strutturali

Sull'opera agisce la spinta attiva del terreno a monte, di cui sono stati riportati i parametri geotecnici al capitolo 5. Sono presenti inoltre i carichi derivanti dalle strutture sovrastanti la paratia, riportati in tabella ed agenti sulla paratia stessa.

Cordolo	Carico permanente non strutturale [kN/m]
Tratto 1	6.26
Tratto 2	5.87

Tabella 23: Carichi permanenti non strutturali agenti sulla paratia.

È presente inoltre il carico permanente non strutturale legato alla presenza di un edificio subito a monte della paratia; tale carico non agisce direttamente sulla paratia ma sul terreno sottostante e si riflette esclusivamente sul tratto 2 di cordolo. Si riporta il valore del carico considerato in tabella.

Cordolo	Carico permanente non strutturale [kN/m²]
Tratto 2	15.00

9.3 Carichi variabili

Si considerano i carichi variabili relativi alla Categoria C 'Ambienti suscettibili di affollamento' e alla categoria G 'Rimesse, parcheggi ed aree per il traffico di veicoli', così come riportati nella Tabella 3.1.ll delle NTC2018.

10COMBINAZIONI DI CARICO

Le combinazioni di carico utilizzate sono quelle previste dalle Norme Tecniche per le Costruzioni. Si elencano in seguito i coefficienti di combinazione, con riferimento alla tabella 2.6.1. del DM, e le relative combinazioni delle azioni:

Carichi	Effetto		Combinazioni statiche Combinazioni sismich					smiche		
			HYD	UPL	EQU	A1	A2	EQU	A1	A2
Permanenti strutturali	Favolevoli	γG1,fav	0.90	0.90	1.00	1.00	1.00	1.00	1.00	1.00
remanenti strutturan	Sfavolevoli	γ G1,sfav	1.30	1.10	1.30	1.30	1.00	1.00	1.00	1.00
Permanenti non	Favolevoli	γG2,fav	0.90	0.00	0.00	0.00	0.00	1.00	0.00	0.00
strutturali	Sfavolevoli	γG2,sfav	1.30	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili	Favolevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili	Sfavolevoli	γQ,sfav	1.50	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili da traffico	Favolevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Sfavolevoli	γQT,sfav	1.50	1.50	1.35	1.35	1.15	1.00	1.00	1.00

Tabella 24: Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche.

Ai fini delle verifiche agli stati limite, con riferimento al par. 2.5.3 si sono definite le seguenti combinazioni delle azioni:

- SLU - Combinazione di carico fondamentale;

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \sum_{i=2}^{n} (\gamma_{Qi} \cdot \psi_{0i} \cdot Q_{ki})$$

- SLE - Combinazione caratteristica rara;

$$G_1 + G_2 + P + Q_{k1} + \sum_{i=2}^{n} (\psi_{0i} \cdot Q_{ki})$$

- SLE - Combinazione frequente;

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \sum_{i=2}^{n} (\psi_{2i} \cdot Q_{ki})$$

SLE – Combinazione quasi permanente;

$$G_1 + G_2 + P + \sum_{i=1}^{n} (\psi_{2i} \cdot Q_{ki})$$

- Combinazione sismica;

$$E + G_1 + G_2 + P + \sum_{i=1}^{n} (\psi_{2i} \cdot Q_{ki})$$

I coefficienti parziali per le verifiche per i parametri geotecnici del terreno sono riassunti nella seguente tabella:

Parametro		Combinazioni statiche		Combinazioni sismiche	
		M1 M2		M1	M2
Tangente dell'angolo di attrito	γtan(φ')	1.00	1.25	1.00	1.00
Coesione efficace	γ c'	1.00	1.25	1.00	1.00
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00
Peso nell'unita di volume	γγ	1.00	1.00	1.00	1.00

Tabella 25: Coefficienti parziali per i parametri geotecnici del terreno

I coefficienti parziali per le verifiche agli stati limite ultimi sono riassunti nella seguente tabella, per paratie

Verifica		Pali infissi			Pali trivellati		
verilica		R1	R2	R3	R1	R2	R3
Punta	γb	1.00	1.00	1.40	1.00	1.00	1.20
Laterale	γ_{S}	1.00	1.00	1.10	1.00	1.00	1.00

Verifica		R1	R2	R3
Tiranti	γ_{Ra}	=	=	1.20

Tabella 26: Coefficienti parziali y_R per le verifiche agli stati limite ultimi di tiranti e Pali

Coefficienti parziali γ_R da applicare alle resistenze caratteristiche (Pali trivellati) per il calcolo della portanza.

Resistenza	γ R	(R1)	(R2)	(R3)
Base	γb	1.00	1.70	1.35
Laterale in compressione	γs	1.00	1.45	1.15
Totale	γt	1.00	1.60	1.30
Laterale in trazione	γ_{st}	1.00	1.60	1.25

Tabella 27: Coefficienti parziali y_R per le verifiche agli stati limite ultimi Pali - Portanza

Coefficienti parziali γτ per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

γτ	(R1)	(R2)	(R3)
$\gamma_{ op}$	1.00	1.60	1.30

Tabella 28: Coefficienti parziali y_R per le verifiche agli stati limite ultimi Pali – Portanza carichi trasversali

Si riportano di seguito i coefficienti di partecipazione usati dal software e tutte le combinazioni di carico delle azioni sollecitanti, generate automaticamente dal codice di calcolo, in conformità con le disposizioni della Normativa Tecnica.

Combinazioni di carico

Simbologia adottata

- γ Coefficiente parziale per le azioni o per effetto delle azioni
- C Coefficiente di partecipazione della condizione (definito dal progettista)

Accanto al nome della condizione tra parentesi viene indicato il tipo di condizione: (P) Permanente, (Pns) Permanente non strutturale, (V) Variabile.

Inoltre con [D] viene indicato se la condizione accidentale definita è dominante oppure no.

Comb. n° 1 SLU-STR

Condizione	Effetto			Ψ	γ	C
Peso proprio	Favore	vole		1.00	1.00	
Condizione 1 (P)	Sfavore	evole		1.30	1.00
Condizione 2 (Pns)	Sfavore	evole		1.50	1.00
Condizione 3 (V) [D]	Sfavore	evole		1.50	1.00

Comb. nº 2 SLU-GEO

Condizione	Effetto			Ψ	γ	C
Peso proprio	Favore	vole		1.00	1.00	
Condizione 1 (P)	Sfavore	evole		1.00	1.00
Condizione 2 (Pns)	Sfavore	evole		1.30	1.00
Condizione 3 (V) [D]	Sfavore	evole		1.30	1.00

Comb. n° 3 SLU-GEO - Sismica

Condizione	Effetto			Ψ	γ	C
Peso proprio	Favore	vole		1.00	1.00	
Condizione 1 (P)	Sfavore	evole		1.00	1.00
Condizione 2 (Pns)	Sfavore	evole		1.00	1.00
Condizione 3 (V)	Sfavore	evole	Ψ_2	1.00	1.00

Comb. nº 4 SLU-GEO - Sismica

Condizione Effett	o	Ψ	γ	C
Peso proprio Favor	evole	1.00	1.00	
Condizione 1 (P)	Sfavorevole		1.00	1.00
Condizione 2 (Pns)	Sfavorevole		1.00	1.00
Condizione 3 (V)	Sfavorevole	Ψ_2	1.00	1.00

Comb. nº 5 SLE Rara

Condizione Effetto Ψ γ C

Peso proprio Favor	evole	1.00	1.00	
Condizione 1 (P)	Sfavorevole		1.00	1.00
Condizione 2 (Pns)	Sfavorevole		1.00	1.00
Condizione 3 (V) [D]	Sfavorevole		1.00	1.00
Comb. n° 6 SLE Quas	<u>si permanente</u>			
Condizione Effetto	0	Ψ	γ	C
Peso proprio Favor	evole	1.00	1.00	
Condizione 1 (P)	Sfavorevole		1.00	1.00
Condizione 2 (Pns)	Sfavorevole		1.00	1.00
Condizione 3 (V)	Sfavorevole	Ψ_2	1.00	1.00
Comb. n° 7 SLE Freq	<u>uente</u>			
Condizione Effette	0	Ψ	γ	C
Peso proprio Favor	evole	1.00	1.00	
Condizione 1 (P)	Sfavorevole		1.00	1.00
Condizione 2 (Pns)	Sfavorevole		1.00	1.00
Condizione 3 (V) [D]	Sfavorevole	Ψ_1	1.00	1.00
Comb. nº 8 SLE Quas	si permanente -	- Sismic	<u>.a</u>	
Condizione Effetto	О	Ψ	γ	C
Peso proprio Favor	evole	1.00	1.00	
Condizione 1 (P)	Sfavorevole		1.00	1.00
Condizione 2 (Pns)	Sfavorevole		1.00	1.00
Condizione 3 (V)	Sfavorevole	Ψ_2	1.00	1.00
Comb. nº 9 SLE Quas	si permanente -	- Sismic	<u>.a</u>	
Condizione Effetto	О	Ψ	γ	C
Peso proprio Favor	evole	1.00	1.00	
Condizione 1 (P)	Sfavorevole		1.00	1.00
Condizione 2 (Pns)	Sfavorevole		1.00	1.00
Condizione 3 (V)	Sfavorevole	Ψ_2	1.00	1.00

11PARATIA DI MICROPALI

Di seguito si riportano una vista tridimensionale della paratia in progetto e gli estratti della planimetria e della sezione tipo della stessa.

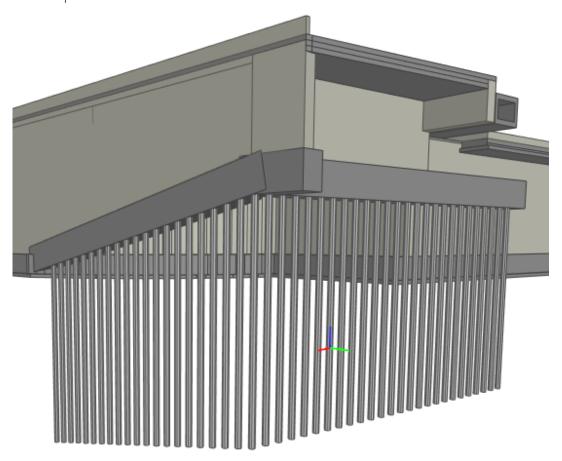


Figura 13: Vista tridimensionale della paratia di micropali in progetto.

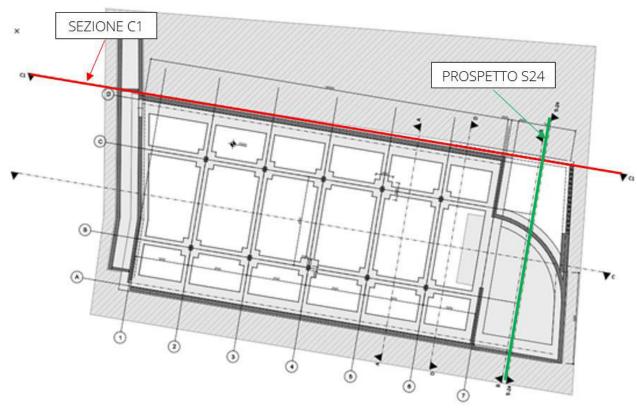


Figura 14: Estratto planimetria di progetto – in rosso la sezione C1 e in verde il prospetto S24.

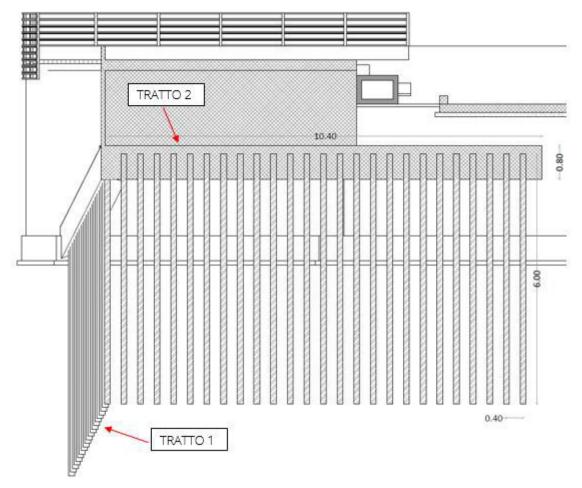


Figura 15: Sezione C1.

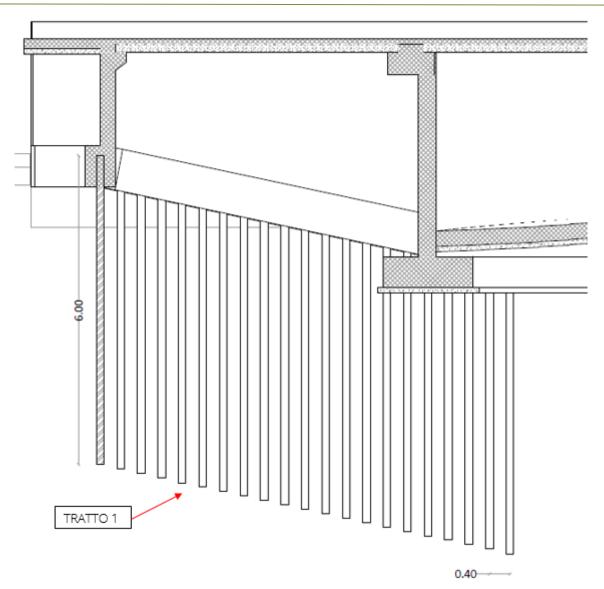


Figura 16: Prospetto S24.

11.1 Geometria di modellazione

Le opere in progetto sono state modellate con lo software PAC 3D simula la paratia con un modello di calcolo a telaio tridimensionale parzialmente immerso nel terreno. La paratia viene quindi suddivisa in una serie di elementi trave, per modellare il comportamento dei pali, dei cordoli, nonché di qualsiasi altro elemento strutturale inserito nello schema a telaio. L'analisi strutturale viene effettuata con il metodo degli elementi finiti, schematizzando la struttura in elementi lineari e nodi. Le incognite del problema sono le componenti di spostamento in corrispondenza di ogni nodo (2 spostamenti e 1 rotazioni).

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Le verifiche sono state eseguite seguendo un'analisi per combinazioni; la geometria di modellazione, riassunta nel seguito, è rappresentata in Figura 19 ed in Figura 19.

Geometria cordoli

n° Indice del cordolo

It Tratto di appartenenza

Xi, Xf Ascissa iniziale e finale del cordolo, espresse in [m]

Yi, Yf Quota iniziale e finale del cordolo, espresse in [m]

L Lunghezza del cordolo, espressa in [m]

α Inclinazione del cordolo nel suo piano rispetto all'orizzontale, espresso in [°]

Sezione Descrizione sezione cordolo

Le coordinate sono riferite al sistema di riferimento locale al tratto.

n°	lt	Xi	Yi	Xf	Yf	L	α	Sezione
1	1	0,00	7,30	9,13	8,50	9,21	7.49	Rettangolare 60x80
2	2	0,00	8,50	10,13	8,50	10,13	0.00	Rettangolare 60x80

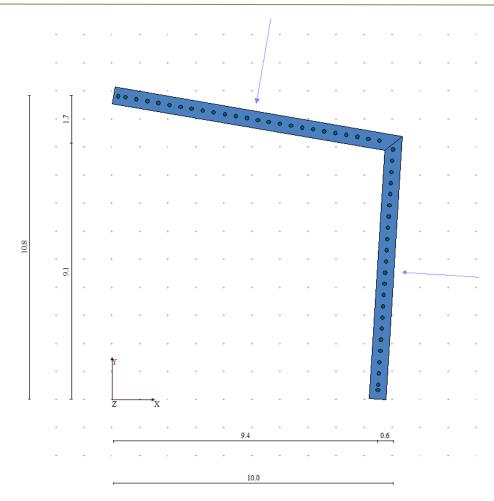


Figura 17: Vista in pianta della paratia - PAC3D.

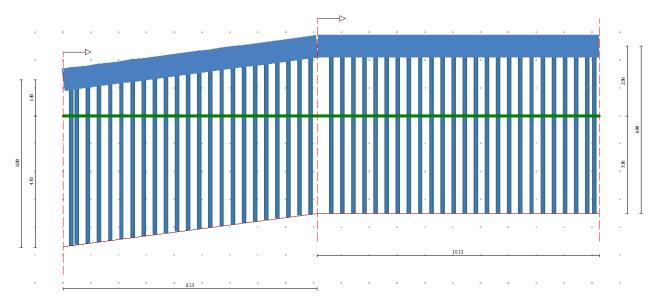


Figura 18: Paratia di micropali vista in sezione - PAC3D.

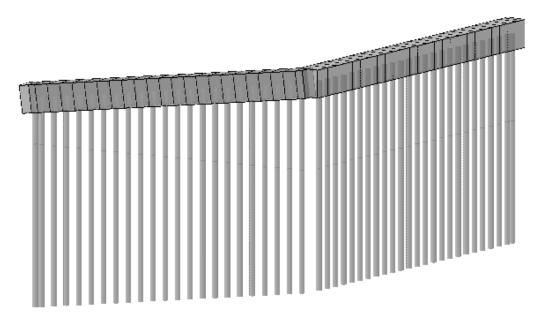


Figura 19: Paratia di micropali vista 3D - PAC3D.

In Figura 20 è mostrata la stratigrafia del sito, costituita da depositi ghiaioso-sabbiosi.

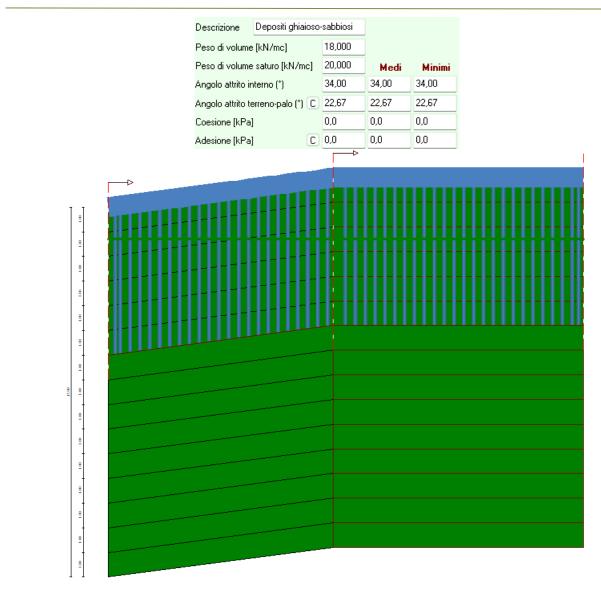


Figura 20: Stratigrafia del sito vista in sezione - PAC3D.

11.2 Sollecitazioni agenti

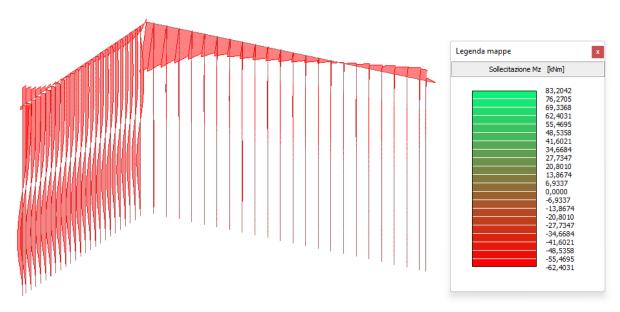


Figura 21: Inviluppo dei momenti Mz - PAC3D.

11.3 Spostamenti

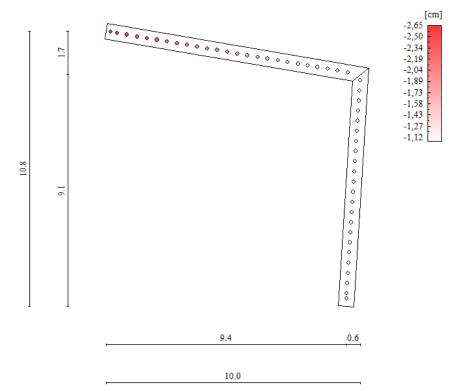
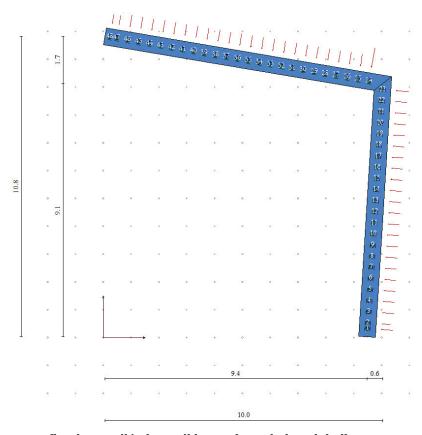


Figura 22: Spostamento massimo.

11.4 Sintesi dei risultati


Comb. nº 1 SLU-STR			•	_
Carico totale Reazione terreno	[kN] [kN]	X -32,3541 30,9573	Y -199,5415 198,5467	Z -1687,9399 1688,0212
Reazione tiranti	[kN]	 30,9573	 198,5467	 1688,0212
Reazione terreno + tiranti Spostamento massimo	[kN] [cm]	7,2230	1,3359	-0,0452
Spostamento minimo	[cm]	-0,2199	-1,7434	-0,0846
Pressione massima sul terreno Pressione minima sul terreno	[kPa]	36 -88		
Pressione minima sui terreno	[kPa]	-00		
Comb no 2 CI II CEO				
Comb. nº 2 SLU-GEO		X	Υ	z
Carico totale	[kN]	-51,4324	-196,0210	-1469,5012
Reazione terreno	[kN]	53,8616	208,5044	1469,5016
Reazione tiranti	[kN]			
Reazione terreno + tiranti	[kN]	53,8616	208,5044	1469,5016
Spostamento massimo	[cm]	5,4586	1,8292	-0,0399 0.0743
Spostamento minimo	[cm]	-0,5090	-2,7608	-0,0742
Pressione massima sul terreno	[kPa]	110		
Pressione minima sul terreno	[kPa]	-86		
Comb. nº 3 SLU-GEO - Sismica				_
Control to the to	F1.N.7	X	Y	Z
Carico totale	[kN]	-66,0157	-191,3553	-1281,4141
Reazione terreno Reazione tiranti	[kN] [kN]	65,4323 	203,7720	1281,4141
Reazione terreno + tiranti	[kN]	65,4323	203,7720	1281,4141
Spostamento massimo	[cm]	3,5815	1,7677	-0,0339
Spostamento minimo	[cm]	-0,4789	-2,5639	-0,0655
Pressione massima sul terreno	[kPa]	104		
Pressione minima sul terreno	[kPa]	-81		
Comb. nº 4 SLU-GEO - Sismica				
		X	Υ	Z
Carico totale	[kN]	-65,6059	-192,8280	-1281,3833
Reazione terreno	[kN]	64,6534	193,2030	1281,3833
Reazione tiranti Reazione terreno + tiranti	[kN] [kN]	64,6534	193,2030	1281,3833
Spostamento massimo	[cm]	2,9157	1,6872	-0,0338
Spostamento minimo	[cm]	-0,4870	-2,4967	-0,0653
			,	•
Pressione massima sul terreno Pressione minima sul terreno	[kPa]	99 -79		
Pressione minima sur terreno	[kPa]	-79		
Comb. nº 5 SLE Rara				
Comb. II 3 SEE INdia		X	Y	Z
Carico totale	[kN]	-28,7197	-152,2212	-1331,8569
Reazione terreno	[kN]	17,1307	154,6983	1331,8565
Reazione tiranti	[kN]		<u></u>	
Reazione terreno + tiranti	[kN]	17,1307	154,6983	1331,8565
Spostamento massimo	[cm]	0,3890	1,1031	-0,0338
Spostamento minimo	[cm]	-0,0649	-0,8404	-0,0651
Pressione massima sul terreno	[kPa]	26		

ressione minima sul terreno	[kPa]	-67		
Comb. nº 6 SLE Quasi permanente				_
Carico totale	[LN]	X 25 1774	Y	1244 2201
Leazione terreno	[kN] [kN]	-35,1774 36,4463	-150,0773 151,6336	-1244,3281 1244,3301
Reazione tirreno	[kN]	30, 11 03	131,0330	1244,5501
leazione terreno + tiranti	[kN]	36,4463	151,6336	1244,3301
postamento massimo	[cm]	9,0908	1,8514	-0,0361
postamento minimo	[cm]	-0,0877	-1,5308	-0,0631
ressione massima sul terreno	[kPa]	27		
ressione minima sul terreno	[kPa]	-67		
Comb. n° 7 SLE Frequente				
		X	Y	Z
Carico totale	[kN]	-33,5630	-150,6133	-1266,2103
leazione terreno	[kN]	24,8585	151,4938	1266,2102
leazione tiranti	[kN]			
eazione terreno + tiranti	[kN]	24,8585	151,4938	1266,2102
postamento massimo	[cm]	13,3588	1,0079	-0,0379
postamento minimo	[cm]	-0,1869	-2,2501	-0,0630
ressione massima sul terreno	[kPa]	25		
and the contrated at 100 miles		C7		
ressione minima sul terreno	[kPa]	-67		
		-6/		
			v	7
omb. n° 8 SLE Quasi permanente -	<u>Sismica</u>	x	Y -149 6091	Z -1247 4595
omb. nº 8 SLE Quasi permanente - arico totale	Sismica [kN]	X -42,6598	-149,6091	-1247,4595
omb. n° 8 SLE Quasi permanente - arico totale eazione terreno	Sismica [kN] [kN]	x		
omb. n° 8 SLE Quasi permanente - arico totale eazione terreno eazione tiranti	Sismica [kN] [kN] [kN]	X -42,6598 32,1454 	-149,6091 148,6145 	-1247,4595 1247,4638
omb. nº 8 SLE Quasi permanente - arico totale eazione terreno eazione tiranti eazione terreno + tiranti	Sismica [kN] [kN] [kN] [kN]	X -42,6598 32,1454 32,1454	-149,6091 148,6145 148,6145	-1247,4595 1247,4638 1247,4638
omb. nº 8 SLE Quasi permanente - arico totale eazione terreno eazione tiranti eazione terreno + tiranti postamento massimo	Sismica [kN] [kN] [kN]	X -42,6598 32,1454 	-149,6091 148,6145 	-1247,4595 1247,4638
omb. nº 8 SLE Quasi permanente - arico totale eazione terreno eazione tiranti eazione terreno + tiranti eostamento massimo eostamento minimo eessione massima sul terreno	Sismica [kN] [kN] [kN] [kN] [cm] [cm] [kPa]	X -42,6598 32,1454 32,1454 0,2956 -1,2137	-149,6091 148,6145 148,6145 4,7259	-1247,4595 1247,4638 1247,4638 -0,0314
omb. nº 8 SLE Quasi permanente - arico totale eazione terreno eazione tiranti eazione terreno + tiranti costamento massimo costamento minimo ressione massima sul terreno	Sismica [kN] [kN] [kN] [kN] [cm]	X -42,6598 32,1454 32,1454 0,2956 -1,2137	-149,6091 148,6145 148,6145 4,7259	-1247,4595 1247,4638 1247,4638 -0,0314
ressione minima sul terreno omb. nº 8 SLE Quasi permanente - arico totale eazione terreno eazione tiranti eazione terreno + tiranti postamento massimo postamento minimo ressione massima sul terreno ressione minima sul terreno omb. nº 9 SLE Quasi permanente -	Sismica [kN] [kN] [kN] [cm] [cm] [cm] [kPa]	X -42,6598 32,1454 32,1454 0,2956 -1,2137	-149,6091 148,6145 148,6145 4,7259	-1247,4595 1247,4638 1247,4638 -0,0314
omb. nº 8 SLE Quasi permanente - arico totale eazione terreno eazione tiranti eazione terreno + tiranti eostamento massimo eostamento minimo eessione massima sul terreno eessione minima sul terreno	Sismica [kN] [kN] [kN] [cm] [cm] [cm] [kPa]	X -42,6598 32,1454 32,1454 0,2956 -1,2137	-149,6091 148,6145 148,6145 4,7259 -1,2053	-1247,4595 1247,4638 1247,4638 -0,0314
amb. nº 8 SLE Quasi permanente - prico totale pazione terreno pazione tiranti pazione terreno + tiranti postamento massimo postamento minimo postamento minimo pessione massima sul terreno pessione minima sul terreno pessione minima sul terreno pessione nº 9 SLE Quasi permanente -	Sismica [kN] [kN] [kN] [cm] [cm] [cm] [kPa]	**X** -42,6598	-149,6091 148,6145 148,6145 4,7259 -1,2053 Y -163,2999	-1247,4595 1247,4638 1247,4638 -0,0314 -0,0617 Z -1249,8753
rico totale rico terreno ricione terreno + tiranti ricione terreno + tiranti rico totale rico totale	Sismica [kN] [kN] [kN] [cm] [cm] [cm] [kPa] [kPa]	X -42,6598 32,1454 32,1454 0,2956 -1,2137 25 -67	-149,6091 148,6145 148,6145 4,7259 -1,2053	-1247,4595 1247,4638 1247,4638 -0,0314 -0,0617
arico totale eazione terreno eazione terreno + tiranti eazione terreno + tiranti eazione terreno + tiranti eazione terreno hostamento massimo eostamento minimo eessione massima sul terreno eessione minima sul terreno emb. nº 9 SLE Quasi permanente - erico totale eazione terreno	Sismica [kN] [kN] [kN] [kN] [cm] [cm] [kPa] [kPa] Sismica [kN] [kN]	x -42,6598 32,1454 32,1454 0,2956 -1,2137 25 -67 x -37,4274 33,4938	-149,6091 148,6145 148,6145 4,7259 -1,2053 Y -163,2999	-1247,4595 1247,4638 1247,4638 -0,0314 -0,0617 Z -1249,8753 1249,8775
amb. nº 8 SLE Quasi permanente - prico totale pazione terreno pazione tiranti pazione terreno + tiranti postamento massimo postamento minimo postamento minimo pessione massima sul terreno pessione minima sul terreno perico totale pazione terreno pazione terreno pazione tiranti	Sismica [kN] [kN] [kN] [kN] [cm] [cm] [kPa] [kPa] [kPa]	**X** -42,6598	-149,6091 148,6145 148,6145 4,7259 -1,2053 Y -163,2999	-1247,4595 1247,4638 1247,4638 -0,0314 -0,0617 Z -1249,8753
arico totale eazione terreno eazione terreno + tiranti eazione massimo eostamento massimo eostamento minimo eessione massima sul terreno eessione minima sul terreno eessione terreno + tiranti eazione terreno eazione terreno eazione terreno eazione terreno eazione terreno + tiranti eazione terreno + tiranti	Sismica [kN] [kN] [kN] [kN] [cm] [cm] [kPa] [kPa] Sismica [kN] [kN]	x -42,6598 32,1454 32,1454 0,2956 -1,2137 25 -67 x -37,4274 33,4938	-149,6091 148,6145 148,6145 4,7259 -1,2053 Y -163,2999 162,6943	-1247,4595 1247,4638 1247,4638 -0,0314 -0,0617 Z -1249,8753 1249,8775
emb. nº 8 SLE Quasi permanente - arico totale eazione terreno eazione tiranti eazione terreno + tiranti eazione terreno + tiranti eazione massimo eostamento minimo eessione massima sul terreno eessione minima sul terreno emb. nº 9 SLE Quasi permanente - erico totale eazione terreno eazione tiranti eazione terreno + tiranti eostamento massimo	Sismica [kN] [kN] [kN] [kN] [cm] [cm] [kPa] [kPa] Sismica [kN] [kN] [kN] [kN]	x -42,6598 32,1454 32,1454 0,2956 -1,2137 25 -67 x -37,4274 33,4938 33,4938	-149,6091 148,6145 148,6145 4,7259 -1,2053 Y -163,2999 162,6943 162,6943	-1247,4595 1247,4638 1247,4638 -0,0314 -0,0617 Z -1249,8753 1249,8775 1249,8775
omb. nº 8 SLE Quasi permanente - arico totale eazione terreno eazione tiranti eazione terreno + tiranti costamento massimo costamento minimo ressione massima sul terreno ressione minima sul terreno	Sismica [kN] [kN] [kN] [kN] [cm] [cm] [kPa] [kPa] Sismica [kN] [kN] [kN] [kN] [kN] [kN]	x -42,6598 32,1454 32,1454 0,2956 -1,2137 25 -67 x -37,4274 33,4938 33,4938 13,5202	-149,6091 148,6145 148,6145 4,7259 -1,2053 Y -163,2999 162,6943 162,6943 1,2612	-1247,4595 1247,4638 1247,4638 -0,0314 -0,0617 Z -1249,8753 1249,8775 1249,8775 -0,0376

11.5 Verifiche strutturali

Inviluppo verifiche presso-flessione pali/micropali in c.a. (massimi e minimi)

Tratto	Palo	X	N	Mz	My	Nu	Muz	Muy	FS
2	47	5,47	-21,41	-8,47	0,61	17,60	-71,57	-1,99	8.45
2	3	5,59	-40,55	0.76	1.01	28,87	38,74	58,96	59.34

Inviluppo verifiche a taglio pali in c.a. (massimi e minimi)

Palo	Tratto	X	Ved	V_{Rd}	FS
2	2	6,00	2,03	614,50	431.31
2	2	6,00	5,46	614,50	113.69

11.6 Verifica stabilità globale

Comb. n° 1 SL It 1 2	<u>(Xc, Yc)</u> (-0,60; 0,00) (-0,60; 0,00)	R 6,03 6,03	(X_v, Y_v) (-6,33; -1,88) (-6,09; -2,48)	(X _M , Y _M) (5,43; 0,00) (5,43; 0,00)	FS 4,77 3,40
Comb. n° 2 SL It 1 2	(Xc, Yc) (-0,60; 0,00) (-0,60; 0,00)	R 6,03 6,03	(X v, Y v) (-6,33; -1,88) (-6,09; -2,48)	(X _M , Y _M) (5,43; 0,00) (5,43; 0,00)	FS 3,81 2,72
Comb. nº 3 SL It 1 2	U-GEO - Sismica (X c, Y c) (-0,60; 0,60) (-0,60; 0,60)	R 6,63 6,63	(X v, Y v) (-6,75; -1,88) (-6,47; -2,48)	(X _M , Y _M) (6,01; 0,00) (6,01; 0,00)	FS 3,99 3,00
Comb. n° 4 SL It 1 2	U-GEO - Sismica (X c, Y c) (-0,60; 0,60) (-0,60; 0,60)	R 6,63 6,63	(X v, Y v) (-6,75; -1,88) (-6,47; -2,48)	(X _M , Y _M) (6,01; 0,00) (6,01; 0,00)	FS 3,99 3,00
Comb. n° 5 SL It 1 2	E Rara (X c, Y c) (-0,60; 0,00) (-0,60; 0,00)	R 6,03 6,03	(X v, Y v) (-6,33; -1,88) (-6,09; -2,48)	(X _M , Y _M) (5,43; 0,00) (5,43; 0,00)	FS 4,77 3,40
Comb. nº 6 SL It 1 2	E Quasi permanente (Xc, Yc) (-0,60; 0,00) (-0,60; 0,00)	R 6,03 6,03	(X _v , Y _v) (-6,33; -1,88) (-6,09; -2,48)	(X _M , Y _M) (5,43; 0,00) (5,43; 0,00)	FS 4,77 3,40
Comb. n° 7 SL It 1 2	E Frequente (Xc, Yc) (-0,60; 0,00) (-0,60; 0,00)	R 6,03 6,03	(X v, Y v) (-6,33; -1,88) (-6,09; -2,48)	(X _M , Y _M) (5,43; 0,00) (5,43; 0,00)	FS 4,77 3,40
Comb. nº 8 SL It 1 2	E Quasi permanente - S (X c, Y c) (-0,60; 0,60) (-0,60; 0,00)	<u>R</u> 6,63 6,03	(X v, Y v) (-6,75; -1,88) (-6,09; -2,48)	(X _M , Y _M) (6,01; 0,00) (5,43; 0,00)	FS 4,23 3,12
Comb. n° 9 SL It 1 2	E Quasi permanente - S (X c, Y c) (-0,60; 0,60) (-0,60; 0,00)	Sismica R 6,63 6,03	(X v, Y v) (-6,75; -1,88) (-6,09; -2,48)	(X _M , Y _M) (6,01; 0,00) (5,43; 0,00)	FS 4,23 3,12

12CONCLUSIONI

Nel presente elaborato, dopo un breve inquadramento topografico dell'area di intervento, sono stati illustrate le opere in progetto e successivamente i risultati delle verifiche geotecniche e strutturali dell'opera in progetto del tipo "paratia di micropali", da realizzarsi nell'ambito del progetto 'REALIZZAZIONE DI PARCHEGGIO PUBBLICO COPERTO E SEMINTERRATO IN VIA SAN SEBASTIANO E RELATIVO COLLEGAMENTO PEDONALE CON PIAZZA VITTORIO EMANUELE II'.

Le strutture in progetto sono state dimensionate e verificate mediante l'ausilio del programma di calcolo PAC16 di Aztec, facendo riferimento all'attuale normativa vigente, il D.M. 17/01/2018.

Dai risultati ottenuti tutte le verifiche effettuate su ciascun elemento risultano SODDISFATTE.